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UNIT 6 
 

SEMANTIC ANALYSIS 
 
 
 

6.1 SEMANTIC ANALYSIS 
 

  Semantic  Analysis  computes  additional  information  related  to  the  meaning  of  the 

program once the syntactic structure is known. 

  In typed languages as C, semantic analysis involves adding information to the symbol 

table and performing type checking. 

  The  information  to  be  computed  is  beyond  the  capabilities  of  standard  parsing 

techniques, therefore it is not regarded as syntax. 

  As  for  Lexical  and  Syntax  analysis,  also  for  Semantic  Analysis  we  need  both  a 
 

Representation Formalism and an Implementation Mechanism. 
 

  As representation formalism this lecture illustrates what are called Syntax Directed 
 

Translations. 
 

6.2 SYNTAX DIRECTED TRANSLATION 
 

  The Principle of Syntax Directed Translation states that the meaning of an input 

sentence is related to its syntactic structure, i.e., to its Parse-Tree. 

  By  Syntax  Directed  Translations  we  indicate  those  formalisms  for  specifying 

translations for programming language constructs guided by context-free  grammars. 

o We associate Attributes to the grammar symbols representing the   language 

constructs. 

o Values  for  attributes  are  computed  by  Semantic  Rules  associated  with 

grammar productions. 

  Evaluation of Semantic Rules may: 
 

o Generate Code; 
 

o Insert information into the Symbol Table; 
 

o Perform Semantic Check; 
 

o Issue error messages; 
 

o etc.
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There are two notations for attaching semantic rules: 
 

1.  Syntax  Directed  Definitions.  High-level  specification  hiding  many  implementation 

details (also called Attribute Grammars). 

2.  Translation  Schemes.  More  implementation  oriented:  Indicate  the  order  in  which 

semantic rules are to be evaluated. 

Syntax Directed Definitions 
 

• Syntax Directed Definitions are a generalization of context-free grammars in which: 
 

1. Grammar symbols have an associated set of Attributes; 
 

2. Productions are associated with Semantic Rules for computing the values of attributes. 
 

 Such formalism generates Annotated Parse-Trees where each node of the tree is a 

record with a field for each attribute (e.g.,X.a indicates the attribute a of the grammar 

symbol X). 

 The value of an attribute of a grammar symbol at a given parse-tree node is defined by 

a semantic rule associated with the production used at that node. 

 
 

We distinguish between two kinds of attributes: 
 

1. Synthesized Attributes. They are computed from the values of the  attributes of the 

children nodes. 

2. Inherited Attributes. They are computed from the values of the attributes of both the 

siblings and the parent nodes 

 
 

Syntax Directed Definitions: An Example 
 

• Example. Let us consider the Grammar for arithmetic expressions. The 

Syntax Directed Definition associates to each non terminal a synthesized 

attribute called val.
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6.3 S-ATTRIBUTED DEFINITIONS 
 

Definition. An S-Attributed Definition is a Syntax Directed Definition that uses 

only synthesized attributes. 

• Evaluation Order. Semantic rules in a S-Attributed Definition can be 

evaluated by a bottom-up, or PostOrder, traversal of the parse-tree. 

• Example. The above arithmetic grammar is an example of an S-Attributed 
 

Definition. The annotated parse-tree for the input 3*5+4n is: 
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6.4 L-attributed definition 
Definition: A SDD its L-attributed if each inherited attribute of  Xi in the RHS of A ! X1 : 

 

:Xn depends only on 
 

1. attributes of X1;X2; : : : ;Xi�1 (symbols to the left of Xi in the RHS) 
 

2. inherited attributes of A. 
 

Restrictions for translation schemes: 
 

1. Inherited attribute of Xi must be computed by an action  before Xi. 
 

2. An action must not refer to synthesized attribute of any symbol to the right of that action. 
 

3. Synthesized attribute for A can only be computed after all attributes it references have 

been completed (usually at end of RHS). 

6.5 SYMBOL TABLES 
 

A symbol table is a major data structure used in a compiler. Associates attributes with 

identifiers used in a program.  For instance, a type attribute is usually associated with each 

identifier. A symbol table is a necessary component Definition (declaration) of identifiers 

appears once in a program .Use of identifiers may appear in many places of the program text 

Identifiers and attributes are entered by the analysis phases. When processing a definition 

(declaration) of an identifier. In simple languages with only global variables and implicit 

declarations. The scanner can enter an identifier into a symbol table if it is not already there 

In block-structured languages with scopes and explicit declarations: 
 

   The parser and/or semantic analyzer enter identifiers and corresponding attributes 
 

   Symbol table information is used by the analysis and synthesis phases 
 

   To verify that used identifiers have been defined (declared) 
 

    To verify that expressions and assignments are semantically correct – type checking 
 

    To generate intermediate or target code 
 

 
 

  Symbol Table Interface 
 

The basic operations defined on a symbol table include: 
 

  allocate – to allocate a new empty symbol table 
 

  free – to remove all entries and free the storage of a symbol table 
 

  insert – to insert a name in a symbol table and return a pointer to its entry
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  lookup – to search for a name and return a pointer to its entry 
 

  set_attribute – to associate an attribute with a given entry 
 

  get_attribute – to get an attribute associated with a given entry 
 

Other operations can be added depending on requirement  For example, a delete operation 

removes a name previously inserted  Some identifiers become invisible (out of scope) after 

exiting a block 

   This interface provides an abstract view of a     symbol table 
 

   Supports the simultaneous existence of multiple tables 
 

   Implementation can vary without modifying the interface 
 

Basic Implementation Techniques 
 

    First consideration is how to insert and lookup names 
 

   Variety of implementation techniques 
 

   Unordered List 
 

   Simplest to implement 
 

   Implemented as an array or a linked list 
 

   Linked list can grow dynamically – alleviates problem of a fixed size array 

   Insertion is fast O(1), but lookup is slow for large tables – O(n) on average 

   Ordered List 

    If an array is sorted, it can be searched using binary search – O(log2 n) 

  Insertion into a sorted array is expensive – O(n) on average 

   Useful when set of names is known in advance – table of reserved words 
 

   Binary Search Tree 
 

    Can grow dynamically 
 

    Insertion and lookup are O(log2 n) on average 
 

 
 

6.6 HASH TABLES AND HASH FUNCTIONS 
 

  A hash table is an array with index range: 0 to TableSize – 1 
 

  Most commonly used data structure to implement symbol tables 
 

  Insertion and lookup can be made very fast – O(1) 
 

  A hash function maps an identifier name into a table index



NSRIT 

Department of CSE 
- 55 - 

 

 

 
 

  A hash function, h(name), should depend solely on name 
 

  h(name) should be computed quickly 
 

  h should be uniform and randomizing in distributing names 
 

  All table indices should be mapped with equal probability. 
 

   Similar names should not cluster to the same table index 
 

 
 

6.7 HASH FUNCTIONS 
 

_ Hash functions can be defined in many ways . . . 
 

_ A string can be treated as a sequence of integer words 
 

_ Several characters are fit into an integer word 
 

_ Strings longer than one word are folded using exclusive-or or addition 
 

_ Hash value is obtained by taking integer word modulo TableSize 
 

_ We can also compute a hash value character by character: 
 

_ h(name) = (c0 + c1 + … + cn–1) mod TableSize, where n is name length 
 

_ h(name) = (c0 * c1 * … * cn–1) mod TableSize 
 

_ h(name) = (cn–1 +        cn–2 + … +       c1 +     c0))) mod TableSize 
 

_ h(name) = (c0 * cn–1 * n) mod TableSize 
 

 
 

6.8 RUNTIME ENVIRONMENT 
 

   Runtime organization of different storage locations 
 

  Representation of scopes and extents during program execution. 
 

  Components of executing program reside in blocks of memory (supplied by OS). 
 

   Three kinds of entities that need to be managed at runtime: 
 

o Generated code for various procedures and programs. 
 

   forms text or code segment of your program: size known at compile time. 
 

o Data objects: 
 

   Global variables/constants: size known at compile time 
 

    Variables declared within procedures/blocks: size known 
 

   Variables created dynamically: size unknown. 
 

o Stack to keep track of procedure activations. 

Subdivide memory conceptually into code and data areas:
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    Code: Program 

  instructions 

    Stack: Manage activation of procedures at runtime. 
 

    Heap: holds variables created dynamically 
 

6.9 STORAGE ORGANIZATION 
 

1Fixed-size objects can be placed in predefined locations. 
 

 
 

 
 

2. Run-time stack and heap 

The STACK is used to store: 

o Procedure activations. 

o The status of the machine just before calling a procedure, so that the status can be 
 

restored when the called procedure returns. 
 

o The HEAP stores data allocated under program control  (e.g. by malloc() in C).
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Activation records 
 

Any  information  needed  for  a  single  activation  of  a  procedure  is     stored  in  the 

ACTIVATION RECORD (sometimes called the STACK FRAME). Today, we’ll assume the 

stack grows DOWNWARD, as on, e.g., the Intel architecture. The activation record gets 

pushed for each procedure call and popped for each procedure return. 

6.9 STATIC ALLOCATION 
 

Statically allocated names are bound to storage at compile time. Storage bindings of 

statically allocated names never change, so even if a name is local to a procedure, its name is 

always bound to the same storage. The compiler uses the type of a name (retrieved from the 

symbol table) to determine storage size required. The required number of bytes (possibly 

aligned) is set aside for the name.The address of the storage is fixed at compile time. 

Limitations: 

−    The size required must be known at compile time. 

−  Recursive  procedures  cannot  be  implemented  as  all  locals  are  statically 

allocated. 

−    No data structure can be created dynamically as all data is static. 
 

 
 

  Stack-dynamic allocation 
 

  Storage is organized as a stack. 
 

  Activation records are pushed and popped. 
 

  Locals and parameters are contained in the activation records for the call. 
 

  This means locals are bound to fresh storage on every call. 
 

  If we have a stack growing downwards, we just need a stack_top pointer. 
 

  To allocate a new activation record, we just increase stack_top. 
 

  To deallocate an existing activation record, we just decrease stack_top. 
 

 
 

  Address generation in stack allocation 
 

The position of the activation record on the stack cannot be determined statically. 

Therefore the compiler must generate addresses RELATIVE to the activation record. If we 

have a downward-growing stack and a stack_top pointer, we generate addresses of the form 

stack_top + offset
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6.10 HEAP ALLOCATION 
 

Some languages do not have tree-structured allocations. In these cases, activations 

have to be allocated on the heap. This allows strange situations, like callee activations that 

live longer than their callers’ activations. This is not common  Heap is used for allocating 

space for objects created at run timeFor example: nodes of dynamic data structures such as 

linked lists and trees 

�Dynamic   memory   allocation   and   deallocation   based   on   the   requirements   of   the 

programmalloc() and free() in C programs 

new()and delete()in C++ programs 
 

new()and garbage collection in Java programs 
 

 
 

�Allocation and deallocation may be completely manual (C/C++), semi-automatic(Java), or 
 

fully automatic (Lisp) 
 

6.11 PARAMETERS PASSING 
 

A language has first-class functionsif functions can bedeclared within any scope 

passed as arguments to other functions returned as results of functions.�In a language with 

first-class functions and static scope, a function value is generally represented by a closure. a 

pair consisting of a pointer to function code a pointer to an activation  record.�Passing 

functions as arguments is very useful in structuring of systems using upcalls 

 
 

An example: 
 

main() 
 

{ int x = 4; 

int f (int y) { 

return x*y; 

} 
 

int g (int →int h){ 
 

int x = 7; 
 

return h(3) + x; 
 

}
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g(f);//returns 12 
 

} 
 

 
 

Passing Functions as  Parameters – Implementation with Static Scope 
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INTERMEDIATE CODE 
 
 
 

7.1. INTERMEDIATE CODE GENERATION 

 
In  the  analysis-synthesis  model  of  a  compiler,  the  front  end  analyzes  a  source 

program and creates an intermediate representation, from which the back end generates target 

code. This facilitates retargeting: enables attaching a back end for the new machine to an 

existing front end. 

 
 

Logical Structure of a Compiler Front End 
 

 
 

 
 

 
 

A compiler front end is organized as in figure above, where parsing, static checking, 

and intermediate-code generation are done sequentially; sometimes they can be combined 

and  folded into parsing. All schemes can be implemented by creating a syntax tree and then 

walking the tree. 

Static Checking 
 

This includes type checking which ensures that operators are applied to compatible 

operands. It also includes any syntactic checks that remain after parsing like 

   flow–of-control checks 
 

o Ex: Break statement within a loop construct 
 

   Uniqueness checks 
 

o Labels in case statements 
 

   Name-related checks 
 

Intermediate Representations 
 

We could translate the source program directly into the target language. However, there 

are benefits to having an intermediate, machine-independent representation.
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  A clear distinction between the machine-independent and machine-dependent parts of 

the compiler 

  Retargeting  is  facilitated  the  implementation  of  language  processors  for  new 

machines will require replacing only the back-end. 

  We could apply machine independent code optimization techniques 
 

Intermediate representations span the gap between the source and target languages. 
 

• High Level Representations 
 

  closer to the source language 
 

  easy to generate from an input program 
 

  code optimizations may not be straightforward 
 

• Low Level Representations 
 

  closer to the target machine 
 

  Suitable for register allocation and instruction selection 
 

  easier for optimizations, final code generation 
 

There are several options for intermediate code. They can be either 
 

• Specific to the language being implemented 
 

P-code for Pascal 
 

Byte code for Java 
 
 

7.2 LANGUAGE INDEPENDENT  3-ADDRESS CODE 

 
IR can be either an actual language or a group of internal data structures that are shared by 

the phases of the compiler. C used as intermediate language as it is flexible, compiles into 

efficient machine code and its compilers are widely available.In all cases, the intermediate 

code is a linearization of the syntax tree produced during syntax and semantic analysis. It is 

formed by breaking down the tree structure into sequential instructions, each of which is 

equivalent to a single, or small number of machine instructions. Machine code can then be 

generated (access might be required to symbol tables etc). TAC can range from high- to low- 

level, depending on the choice of operators. In general, it is a statement containing at most 3 

addresses or operands. 

The general form is x := y op z, where “op” is an operator, x is the result, and y and z are 
 

operands. x, y, z are variables, constants, or “temporaries”. A three-address instruction
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consists of at most 3 addresses for each statement. 
 

It is a linear zed representation of a binary syntax tree. Explicit names correspond to interior 

nodes of the graph. E.g. for a looping statement , syntax tree represents components of the 

statement, whereas three-address code contains labels and jump instructions to represent the 

flow-of-control as in machine language. A TAC instruction has at most one operator on the 

RHS of an instruction; no built-up arithmetic expressions are permitted. 

e.g. x + y * z can be translated as 

t1 = y * z 

t2 = x + t1 
 

Where t1 & t2 are compiler–generated temporary names. 
 

5Since it unravels multi-operator arithmetic expressions and nested control-flow statements, 

it is useful for target code generation and optimization. 

 
Addresses and Instructions 

 

• TAC consists of a sequence of instructions, each instruction may have up to three 

addresses, prototypically t1 = t2 op t3 

• Addresses may be one of: 
 

o A name. Each name is a symbol table index. For convenience, we writethe names 

as the identifier. 

o A constant. 
 

o A compiler-generated temporary. Each time a temporary address is needed, the 

compiler generates another name from the stream t1, t2, t3, etc. 

• Temporary names allow for code optimization to easily move Instructions 
 

• At target-code generation time, these names will be allocated to registers or to memory. 
 

• TAC Instructions 
 

o Symbolic labels will be used by instructions that alter the flow of control. 

The instruction addresses of labels will be filled in later. 

L: t1 = t2 op t3 
 

o Assignment instructions: x = y op z 
 

• Includes binary arithmetic and logical operations 
 

o Unary assignments: x = op y
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• Includes unary arithmetic op (-) and logical op (!) and type 
 

conversion 
 

o Copy instructions: x = y 
 

o Unconditional jump: goto L 
 

• L is a symbolic label of an instruction 
 

o Conditional jumps: 
 

if x goto L If x is true, execute instruction L next 

ifFalse x goto L If x is false, execute instruction L next 

o Conditional jumps: 
 

if x relop y goto L 
 

– Procedure calls. For a procedure call p(x1, …, xn) 
 

param x1 
 

… 
 

param xn 

call p, n 

– Function calls : y= p(x1, …, xn) y = call p,n , return y 
 

 
 

– Indexed copy instructions: x = y[i] and x[i] = y 
 

  Left: sets x to the value in the location i memory units beyond y 
 

  Right: sets the contents of the location i memory units beyond x to y 
 

– Address and pointer instructions: 
 

• x = &y sets the value of x to be the location (address) of y. 
 

• x = *y, presumably y is a pointer or temporary whose value is a 
 

location. The value of x is set to the contents of that location. 
 

• *x = y sets the value of the object pointed to by x to the value of y. 
 

Example: Given the statement do i = i+1; while (a[i] < v ); , the TAC can be written as 

below in two ways, using either symbolic labels or position number of instructions for 

labels.
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Types of three address code 
 

There are different types of statements in source program to which three address code has to 

be generated. Along with operands and operators, three address code also use labels to 

provide flow of control for statements like if-then-else, for and while. The different types of 

three address code statements are: 

Assignment statement 
 

a = b op c 
 

In the above case b and c are operands, while op is binary or logical operator. The result of 

applying op on b and c is stored in a. 

Unary operation 
 

a = op b This is used for unary minus or logical negation. 

Example: a = b * (- c) + d 

Three address code for the above example will be 

t1 = -c 

t2 = t1 * b 

t3 = t2 + d 

a = t3 

Copy Statement 
 

a = b 
 

The value of b is stored in variable a. 
 

 
 

Unconditional jump 
 

goto L 
 

Creates label L and generates three-address code ‘goto L’ 
 

v. Creates label L, generate code for expression exp, If the exp returns value true then go to 

the statement labelled L. exp returns a value false go to the statement immediately following 

the if statement. 

Function call 
 

For a function fun with n arguments a1,a2,a3….an ie., 

fun(a1, a2, a3,…an),
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the three address code will be 
 

Param a1 
 

Param a2 
 

… 
 

Param an 
 

Call fun, n 
 

Where param defines the arguments to function. 
 

Array indexing 
 

In order to access the elements of array either single dimension or 
 

multidimension, three address code requires base address and offset value. Base address 

consists of the address of first element in an array. Other elements of the array can be 

accessed using the base address and offset value. 

Example: x = y[i] 
 

Memory location m = Base address of y + Displacement i 

x = contents of memory location m 

similarly x[i] = y 
 

Memory location m = Base address of x + Displacement i 
 

The value of y is stored in memory location m 
 

Pointer assignment 
 

 
 

x = &y x stores the address of memory location y 

x = *y y is a pointer whose r-value is location 

*x = y sets r-value of the object pointed by x to the r-value of y 
 

Intermediate representation should have an operator set which is rich to implement most of 

the 

operations of source language. It should also help in mapping to restricted instruction set of 

target machine. 

Data Structure 
 

Three address code is represented as record structure with fields for operator and operands. 

These
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records can be stored as array or linked list. Most common implementations of three address 

code are- 

Quadruples, Triples and Indirect triples. 
 

7.3 QUADRUPLES- 
 

Quadruples consists of four fields in the record structure. One field to store operator op, two 

fields to store operands or arguments arg1and arg2 and one field to store result res. res = arg1 

op arg2 

Example: a = b + c 
 

b is represented as arg1, c is represented as arg2, + as op and a as res. 
 

Unary operators like ‘-‘do not use agr2. Operators like param do not use agr2 nor result. For 

conditional and unconditional statements res is label. Arg1, arg2 and res are pointers to 

symbol table or literal table for the names. 

Example: a = -b * d + c + (-b) * d 
 

Three address code for the above statement is as follows 

t1 = - b 

t2 = t1 * d 

t3 = t2 + c 

t4 = - b 

t5 = t4 * d 

t6 = t3 + t5 

a = t6 

Quadruples for the above example is as follows
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7.4 TRIPLES 
 

Triples uses only three fields in the record structure. One field for operator, two fields for 

operands named as arg1 and arg2. Value of temporary variable can be accessed by the 

position of the statement the computes it and not by location as in quadruples. 

 
 

Example: a = -b * d + c + (-b) * d 
 

Triples for the above example is as follows 
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Arg1 and arg2 may be pointers to symbol table for program variables or literal table for 

constant or pointers into triple structure for intermediate results. 

Example: Triples for statement x[i] = y which generates two records is as follows 
 

 
 

 
 

 
 
 
 

Triples for statement x = y[i] which generates two records is as follows 
 

 
 

 
 

 
 

Triples  are  alternative  ways  for  representing  syntax  tree  or  Directed  acyclic  graph  for 

program defined names. 

Indirect Triples 
 

Indirect triples are used to achieve indirection in listing of pointers. That is, it uses pointers to 

triples than listing of triples themselves. 

Example: a = -b * d + c + (-b) * d
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Conditional operator and operands. Representations include quadruples, triples and indirect 

triples. 

 
 

7.5 SYNTAX TREES 
 

Syntax trees are high level IR. They depict the natural hierarchical structure of the source 

program. Nodes represent constructs in source program and the children of a node represent 

meaningful components of the construct. Syntax trees are suited for static type checking. 

 
 

Variants of Syntax Trees: DAG 
 

A directed acyclic graph (DAG) for an expression identifies the common sub expressions 

(sub expressions that occur more than once) of the expression. DAG's can be constructed 

by using the same techniques that construct syntax trees. 

A DAG has leaves corresponding to atomic operands and interior nodes corresponding to 

operators. A node N in a DAG has more than one parent if N represents a common sub 

expression, so a DAG represents expressions concisely. It gives clues to compiler about 

the generating efficient code to evaluate expressions. 

Example 1: Given the grammar below, for the input string id + id * id , the parse tree,



NSRIT 

Department of CSE 
- 70 - 

 

 

 
 

syntax tree and the DAG are as shown. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example : DAG for the expression a + a * (b - c) + ( b - c ) * d is shown below. 
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Using the SDD to draw syntax tree or DAG for a given expression:- 
 

• Draw the parse tree 
 

• Perform a post order traversal of the parse tree 
 

• Perform the semantic actions at every node during the traversal 
 

–  Constructs  a  DAG  if  before  creating  a  new  node,  these  functions  check  whether  an 

identical node already exists. If yes, the existing node is returned. 

SDD to produce Syntax trees or DAG is shown below. 
 

 
 

 
 

For the expression a + a * ( b – c) + (b - c) * d, steps for constructing the DAG is as 

below. 
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7.6 BASIC BLOCKS AND FLOW GRAPHS 
 

A graph representation of three-address statements, called a flow graph, is useful for 

understanding code-generation algorithms, even if the graph is not explicitly constructed by a 

code-generation algorithm. Nodes in the flow graph represent computations, and the edges 

represent the flow of control. Flow graph of a program can be used as a vehicle to collect 

information about the intermediate program. Some register-assignment algorithms use flow 

graphs to find the inner loops where a program is expected to spend most of its time. 

 
 

BASIC BLOCKS 
 

A basic block is a sequence of consecutive statements in which flow of control 
 

enters at the beginning and leaves at the end without halt or possibility of branching except at 

the end. The following sequence of three-address statements forms a basic block: 

t1 := a*a 

t2 := a*b 

t3 := 2*t2 

t4 := t1+t3 

t5 := b*b 

t6 := t4+t5 
 

A three-address statement x := y+z is said to define x and to use y or z. A name in a basic 

block is said to live at a given point if its value is used after that point in the program, 

perhaps in another basic block. 

The following algorithm can be used to partition a sequence of three-address statements into 

basic blocks. 

Algorithm 1: Partition into basic blocks. 
 

Input: A sequence of three-address statements. 
 

Output: A list of basic blocks with each three-address statement in exactly one block. 

Method: 

1. We first determine the set of leaders, the first statements of basic blocks. 

The rules we use are the following: 

I) The first statement is a leader. 
 

II) Any statement that is the target of a conditional or unconditional goto is a leader.
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III) Any statement that immediately follows a goto or conditional goto statement is a 

leader. 

2. For each leader, its basic block consists of the leader and all statements up to but not 

including the next leader or the end of the program. 

Example 3: Consider the fragment of source code shown in fig. 7; it computes the dot 

product of two vectors a and b of length 20. A list of three-address statements performing 

this computation on our target machine is shown in fig. 8. 

begin 
 

prod := 0; 
 

i := 1; 
 

do begin 
 

prod := prod + a[i] * b[i]; 
 

i := i+1; 
 

end 
 

while i<= 20 

end 

Let us apply Algorithm 1 to the three-address code in fig 8 to determine its basic 
 

blocks. statement (1) is a leader by rule (I) and statement (3) is a leader by rule (II), since the 

last statement can jump to it. By rule (III) the statement following (12) is a leader. Therefore, 

statements (1) and (2) form a basic block. The remainder of the program beginning with 

statement (3) forms a second basic block. 

(1) prod := 0 

(2) i := 1 

(3) t1 := 4*i 
 

(4) t2 := a [ t1 ] 

(5) t3 := 4*i 

(6) t4 :=b [ t3 ] 

(7) t5 := t2*t4 

(8) t6 := prod +t5 

(9) prod := t6 

(10) t7 := i+1
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(11) i := t7 
 

(12) if i<=20 goto (3) 
 

 
 

7.7 TRANSFORMATIONS ON BASIC BLOCKS 
 

A basic block computes a set of expressions. These expressions are the values of the names 

live on exit from block. Two basic blocks are said to be equivalent if they compute the same 

set of expressions. A number of transformations can be applied to a basic block without 

changing the set of expressions computed by the block. Many of these transformations are 

useful for improving the quality of code that will be ultimately generated from a basic block. 

There are two important classes of local transformations that can be applied to basic blocks; 

these are the structure-preserving transformations and the algebraic transformations. 

 
 

7.8 STRUCTURE-PRESERVING TRANSFORMATIONS 
 

The primary structure-preserving transformations on basic blocks are: 
 

1. Common sub-expression elimination 
 

2. Dead-code elimination 
 

3. Renaming of temporary variables 
 

4. Interchange of two independent adjacent statements 
 

We assume basic blocks have no arrays, pointers, or procedure calls. 
 

1. Common sub-expression elimination 
 

Consider the basic block 
 

a:= b+c 

b:= a-d 

c:= b+c 

d:= a-d 

The second and fourth statements compute the same expression, namely b+c-d, and hence 

this basic block may be transformed into the equivalent block 

a:= b+c 

b:= a-d 

c:= b+c d:= b 
 

Although the 1st and 3rd statements in both cases appear to have the same expression
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on the right, the second statement redefines b. Therefore, the value of b in the 3rd 

statement is different from the value of b in the 1st, and the 1st and 3rd statements do 

not compute the same expression. 

2. Dead-code elimination 
 

Suppose x is dead, that is, never subsequently used, at the point where the statement 

x:= y+z appears in a basic block. Then this statement may be safely removed without 

changing the value of the basic block. 

3. Renaming temporary variables 
 

Suppose we have a statement t:= b+c, where t is a temporary. If we change this statement to 

u:= b+c, where u is a new temporary variable, and change all uses of this instance of t to u, 

then the value of the basic block is not changed. 

4.Interchange of statements 
 

Suppose we have a block with the two adjacent statements 

t1:= b+c 

t2:= x+y 
 

Then we can interchange the two statements without affecting the value of the block if and 

only if neither x nor y is t1 and neither b nor c is t2. A normal-form basic block permits all 

statement interchanges that are possible. 

 
 

7.9 DAG REPRESENTATION OF BASIC BLOCKS 
 

The goal is to obtain a visual picture of how information flows through the block. The leaves 

will show the values entering the block and as we proceed up the DAG we encounter uses of 

these values defs (and redefs) of values and uses of the new values. 

Formally, this is defined as follows. 
 

1. Create a leaf for the initial value of each variable appearing in the block. (We do not 

know what that the value is, not even if the variable has ever been given a value). 

2. Create a node N for each statement s in the block. 
 

i. Label N with the operator of s. This label is drawn inside the node. 
 

ii. Attach to N those variables for which N is the last def in the block. These additional labels 

are drawn along side of N. 

iii. Draw edges from N to each statement that is the last def of an operand used by N.
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2. Designate as output nodes those N whose values are live on exit, an officially-mysterious 

term meaning values possibly used in another block. (Determining the live on exit values 

requires global, i.e., inter-block, flow analysis.) As we shall see in the next few sections 

various basic-block optimizations are facilitated by using the DAG. 

Finding Local Common Subexpressions 
 

As we create nodes for each statement, proceeding in the static order of the tatements, we 

might notice that a new node is just like one already in the DAG in which case we don't need 

a new node and can use the old node to compute the new value in addition to the one it 

already was computing. Specifically, we do not construct a new node if an existing node has 

the same children in the same order and is labeled with the same operation. 

Consider computing the DAG for the following block of code. 

a = b + c 

c = a + x 

d = b + c 

b = a + x 

 
 

The DAG construction is explain as follows (the movie on the right accompanies the 

explanation). 

1. First we construct leaves with the initial values. 
 

2. Next we process a = b + c. This produces a node labeled + with a attached and having b0 

and c0 as children. 

3. Next we process c = a + x. 
 

4. Next we process d = b + c. Although we have already computed b + c in the first 

statement, the c's are not the same, so we produce a new node. 

5. Then we process b = a + x. Since we have already computed a + x in statement 2, we do 

not produce a new node, but instead attach b to the old node. 

6. Finally, we tidy up and erase the unused initial values. 
 

You might think that with only three computation nodes in the DAG, the block could be 

reduced to three statements (dropping the computation of b). However, this is wrong. Only if 

b is dead on exit can we omit the computation of b. We can, however, replace the last 

statement  with  the     simpler  b  =  c.  Sometimes  a  combination  of  techniques  finds



NSRIT 

Department of CSE 
- 77 - 

 

 

 
 

improvements that no single technique would find. For example if a-b is computed, then both 

a and b are incremented by one, and then a-b is computed again, it will not be recognized as a 

common subexpression even though the value has not changed. However, when combined 

with various algebraic transformations, the common value can be recognized. 

 
 

7.10 DEAD CODE ELIMINATION 
 

Assume we are told (by global flow analysis) that certain values are dead on exit. We 

examine  each  root  (node  with  no  ancestor)  and  delete  any that  have  no  live  variables 

attached. This process is repeated since new roots may have appeared. 

For example, if we are told, for the picture on the right, that only a and b are live, then the 

root d can be removed since d is dead. Then the rightmost node becomes a root, which also 

can be removed (since c is dead). 

The Use of Algebraic Identities 
 

Some of these are quite clear. We can of course replace x+0 or 0+x by simply x. Similar 
 

Considerations apply to 1*x, x*1, x-0, and x/1. 
 

 
 

Strength reduction 
 

Another class of simplifications is strength reduction, where we replace one operation by a 

cheaper one. A simple example is replacing 2*x by x+x on architectures where addition is 

cheaper than multiplication. A more sophisticated strength reduction is applied by compilers 

that recognize induction variables (loop indices). Inside a for i from 1 to N loop, the 

expression 4*i can be strength reduced to j=j+4 and 2^i can be strength reduced to j=2*j 

(with suitable initializations of j just before the loop). Other uses of algebraic identities are 

possible; many require a careful reading of the language 

reference manual to ensure their legality. For example, even though it might be advantageous 

to convert ((a + b) * f(x)) * a to ((a + b) * a) * f(x) 

it is illegal in Fortran since the programmer's use of parentheses to specify the order of 

operations can not be violated. 

Does 
 

a = b + c 
 

x = y + c + b + r



NSRIT 

Department of CSE 
- 78 - 

 

 

 
 

contain a common sub expression of b+c that need be evaluated only once? 
 

The answer depends on whether the language permits the use of the associative and 

commutative law for addition. (Note that the associative law is invalid for floating point 

numbers.)
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OPTIMIZATION 

 

 
 

8.1 PRINCIPLE SOURCES OF OPTIMIZATION 
 

 
 

A transformation of a program is called local if it can be performed by looking only at the 

statements in a bas9ic block; otherwise, it is called global. Many transformations can be 

performed at both the local and global levels. Local transformations are usually performed 

first. 

Function-Preserving Transformations There are a number of ways in which a compiler can 

improve a program without   changing the function it computes. Common sub expression 

elimination,  copy  propagation,  deadcode  elimination,  and  constant  folding  are  common 

examples of such function-preserving transformations. The other transformations come up 

primarily  when  global  optimizations  are  performed.  Frequently,  a  program  will  include 

several calculations of the same value, such as an offset in an array. Some of these duplicate 

calculations cannot be avoided by the programmer because they lie below the level of detail 

accessible within the source language. For example, block B5 recalculates 4*i and 4*j. 

Common  Sub  expressions  An  occurrence  of  an  expression  E  is  called  a  common  sub 

expression if E was  previously  computed, and the values of variables in E have not changed 

since the previous  computation. We can avoid re computing the expression if we can use the 

previously computed value. For example, the assignments to t7 and t10 have the common sub 

expressions 4*I and 4*j, respectively, on the right side in Fig. They have been eliminated in 

Fig by using t6 instead of t7 and t8 instead of t10. This change is what would result if we 

reconstructed the intermediate code from the dag for the basic block. 

 
 

Example: the above Fig shows the result of eliminating both global and local common  sub 

expressions from blocks B5 and B6 in the flow graph of Fig. We first discuss the 

transformation of B5 and then mention some subtleties involving arrays. 

After local common sub expressions are eliminated B5 still evaluates 4*i and 4*j, as



NSRIT 

Department of CSE 
- 80 - 

 

 

 
 

Shown in the earlier fig. Both are common sub expressions; in particular, the three statements 

t8:= 4*j; t9:= a[t[8]; a[t8]:=x in B5 can be replaced by t9:= a[t4]; a[t4:= x using t4 computed 

in block B3. In Fig. observe that as control passes from the evaluation of 4*j in B3 to B5, 

there is no change in j, so t4 can be used if 4*j is needed. 

Another  common  sub  expression  comes  to  light  in  B5  after  t4  replaces  t8.  The  new 

expression a[t4] corresponds to the value of a[j] at the source level. Not only does j retain its 

value as control leaves b3 and then enters B5, but a[j], a value computed into a temporary t5, 

does too because there are no assignments to elements of the array a in the interim. The 

statement t9:= a[t4]; a[t6]:= t9 in B5 can therefore be replaced by 

a[t6]:= t5 The expression in blocks B1 and B6 is not considered a common sub expression 

although t1 can be used in both places. After control leaves B1 and before it reaches B6,it 

can go through B5,where there are assignments to a. Hence, a[t1] may not have the same 

value on reaching B6 as it did in leaving B1, and it is not safe to treat a[t1] as a common sub 

expression. 

Copy Propagation 
 

Block B5 in Fig. can be further improved by eliminating x using two new transformations. 

One concerns assignments of the form f:=g called copy statements, or copies for short. Had 

we gone into more detail in Example 10.2, copies would have arisen much sooner, because 

the algorithm for eliminating common sub expressions introduces them, as do several other 

algorithms. For example, when the common sub expression in c:=d+e is eliminated in Fig., 

the algorithm uses a new variable t to hold the value of d+e. Since control may reach c:=d+e 

either after the assignment to a or after the assignment to b, it would be incorrect to replace 

c:=d+e by either c:=a or by c:=b. The idea behind the copy-propagation transformation is to 

use g for f, wherever possible after the copy statement f:=g. For example, the assignment 

x:=t3 in block B5 of Fig. is a copy. Copy propagation applied to B5 yields: 

x:=t3 

a[t2]:=t5 

a[t4]:=t3 

goto B2 Copies introduced during common subexpression elimination. This may not appear 

to be an improvement, but as we shall see, it gives us the opportunity to eliminate the 

assignment to x.
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8.2 DEAD-CODE ELIMINATIONS 
 

A variable is live at a point in a program if its value can be used subsequently; otherwise, it is 

dead at that point. A related idea is dead or useless code, statements that compute values that 

never get used. While the programmer is unlikely to introduce any dead code intentionally, it 

may appear as the result of previous transformations. For example, we discussed the use of 

debug that is set to true or false at various points in the program, and used in statements like 

If (debug) print. By a data-flow analysis, it may be possible to deduce that each time the 

program reaches this statement, the value of debug is false. Usually, it is because there is one 

particular statement Debug :=false 

That we can deduce to be the last assignment to debug prior to the test no matter what 

sequence of branches the program actually takes. If copy propagation replaces debug by 

false, then theprint statement is dead because it cannot be reached. We can eliminate both the 

test and printing from the o9bject code. More generally, deducing at compile time that the 

value of an expression is a constant and using the constant instead is known as constant 

folding. One advantage of copy propagation is that it often turns the copy statement into dead 

code.  For  example,  copy  propagation  followed  by  dead-code  elimination  removes  the 

assignment to x and transforms 1.1 into 
 

a [t2 ] := t5 

a [t4] := t3 

goto B2 

 
 
 

 

8.3 PEEPHOLE OPTIMIZATION 
 

A statement-by-statement code-generations strategy often produce target code that contains 

redundant instructions and suboptimal constructs .The quality of such target code can be 

improved by applying “optimizing” transformations to the target program. 

A simple but effective technique for improving the target code is peephole optimization, a 

method for trying to improving the performance of the target program by examining a short 

sequence of target instructions (called the peephole) and replacing these  instructions by a 

shorter or faster sequence, whenever possible.
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The peephole is a small, moving window on the target program. The code in 
 

the peephole need not contiguous, although some implementations do require this. We shall 

give the following examples of program transformations that are characteristic of peephole 

optimizations: 

• Redundant-instructions elimination 
 

• Flow-of-control optimizations 
 

• Algebraic simplifications 
 

• Use of machine idioms 
 

REDUNTANT LOADS AND STORES 
 

If we see the instructions sequence 
 

(1) (1) MOV R0,a 
 

(2) (2) MOV a,R0 
 

-we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the 

value of a is already in register R0.If (2) had a label we could not be sure that (1) was always 

executed immediately before (2) and so we could not remove (2). 

UNREACHABLE CODE 
 

Another opportunity for peephole optimizations is the removal of unreachable 
 

instructions. An unlabeled instruction immediately following an unconditional jump may be 

removed.  This  operation  can  be  repeated  to  eliminate  a  sequence  of  instructions.  For 

example, for debugging purposes, a large program may have within it certain segments that 

are executed only if a variable debug is 1.In C, the source code might look like: 

 
 

#define debug 0 
 

…. 
 

If ( debug ) { 
 

Print debugging information 
 

} 
 

In the intermediate representations the if-statement may be translated as: 

If debug =1 goto L2 

Goto L2 
 

L1: print debugging information
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L2: …………………………(a) 
 

One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what 

the value of debug; (a) can be replaced by: 

If debug ≠1 goto L2 
 

Print debugging information 
 

L2: ……………………………(b) 
 

As the argument of the statement of (b) evaluates to a constant true it can be replaced by 
 

 
 

If debug ≠0 goto L2 
 

Print debugging information 
 

L2: ……………………………(c) 
 

As the argument of the first statement of (c) evaluates to a constant true, it can be replaced by 

goto L2. Then all the statement that print debugging aids are manifestly unreachable and can 

be eliminated one at a time. 

 
 

8.4 FLOW-OF-CONTROL OPTIMIZATIONS 
 

 
 

The unnecessary jumps can be eliminated in either the intermediate code or the 
 

target code by the following types of peephole optimizations. We can replace the jump 

sequence 

goto L2 
 

…. 
 

L1 : gotoL2 
 

by the sequence 

goto L2 

…. 
 

L1 : goto L2 
 

If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto 
 

L2 provided it is preceded by an unconditional jump .Similarly, the sequence 

if a < b goto L1 

….
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L1 : goto L2 
 

can be replaced by 

if a < b goto L2 

…. 
 

L1 : goto L2 
 

Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto. 

Then the sequence 

goto L1 
 

…….. 
 

L1:if a<b goto L2 
 

L3: …………………………………..(1) 
 

may be replaced by 

if a<b goto L2 

goto L3 
 

……. 
 

L3: ………………………………….(2) 
 

While  the  number  of  instructions  in  (1)  and  (2)  is  the  same,  we  sometimes  skip  the 

unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time 

 
 

8.5 REGISTER ALLOCATION 
 

Instructions involving register operands are usually shorter and faster than those involving 

operands in memory. Therefore, efficient utilization of register is particularly important in 

generating good code. The use of registers is often subdivided into two sub problems: 

1. During register allocation, we select the set of variables that will reside in registers at a 

point in the program. 

2. During a subsequent register assignment phase, we pick the specific register that a variable 

will reside in. Finding an optimal assignment of registers to variables is difficult, even with 

single register values. Mathematically, the problem is NP-complete. The problem is further 

complicated because the hardware and/or the operating system of the target machine may 

require that certain register usage conventions be observed.
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Certain machines require register pairs (an even and next odd numbered register) for some 

operands and results. For example, in the IBM System/370 machines integer  multiplication 

and integer division involve register pairs. The multiplication instruction is of the form  M x, 

y where x, is the multiplicand, is the even register of an even/odd register pair. 

The multiplicand value is taken from the odd register pair. The multiplier y is a single 

register. The product occupies the entire even/odd register pair. 

The division instruction is of the form D x, y where the 64-bit dividend occupies an even/odd 

register pair whose even register is x; y represents the divisor. After division, the even 

register holds the remainder and the odd register the quotient. Now consider the two three 

address code sequences (a) and (b) in which the only difference is 

the operator in the second statement. The shortest assembly sequence for (a) and (b) are 

given in(c). Ri stands for register i. L, ST and A stand for load, store and add respectively. 

The optimal choice for the register into which ‘a’ is to be loaded depends on what will 

ultimately happen to e. 

t := a + b t := a + b 

t := t * c t := t + c 

t := t / d t := t / d 
 

(a) (b) 
 

Two three address code sequences 
 

L R1, a L R0, a 

A R1, b A R0, b 

M R0, c A R0, c 

D R0, d SRDA R0, 
 

ST R1, t          D R0, d 
 

ST R1, t 
 

(a)           (b) 
 

 
 

8.6 CHOICE OF OF EVALUATION ORDER 
 

The order in which computations are performed can affect the efficiency of the target code. 

Some computation orders require fewer registers to hold intermediate results than others. 

Picking a best order is another difficult, NP-complete problem. Initially, we shall avoid the
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problem by generating code for the three -address statements in the order in which they have 

been produced by the intermediate code generator. 

 
 

8.7 APPROCHES TO CODE GENERATION 
 

The most important criterion for a code generator is that it produce correct code. Correctness 

takes on special significance because of the number of special cases that code generator must 

face. Given the premium on correctness, designing a code generator so it can be easily 

implemented,  tested,  and  maintained  is  an  important  design  goal    Reference  Counting 

Garbage Collection The difficulty in garbage collection is not the actual process of collecting 

the  garbage--it  is  the  problem  of  finding  the  garbage  in  the  first  place.  An  object  is 

considered to be garbage when no references to that object exist. But how can we tell when 

no references to an object exist?  A simple expedient is to keep track in each object of the 

total number of references to that object. That is, we add a special field to each object called 

a reference count   . The idea is that the reference count field is not accessible to the Java 

program. Instead, the reference count field is updated by the Java virtual machine itself. 

Consider the statement 

Object p = new Integer (57); 
 

which creates a new instance of the Integer class. Only a single variable, p, refers to the 

object. Thus, its reference count should be one. 

 
 

Figure: Objects with reference counters. 
 

Now consider the following sequence of statements: 

Object p = new Integer (57); 

Object q = p; 
 

This sequence creates a single Integer instance. Both p and q refer to the same object. 

Therefore, its reference count should be two.
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In general, every time one reference variable is assigned to another, it may be necessary to 

update  several  reference  counts.  Suppose  p  and  q  are  both  reference  variables.  The 

assignment 

p = q; 
 

would be implemented by the Java virtual machine as follows: 
 

if (p != q) 
 

{ 
 

if (p != null) 
 

--p.refCount; 
 

p = q; 
 

if (p != null) 
 

++p.refCount; 
 

} 
 

For example suppose p and q are initialized as follows: 

Object p = new Integer (57); 

Object q = new Integer (99); 
 

As shown in Figure  (a), two Integer objects are created, each with a reference count of 

one. Now, suppose we assign q to p using the code sequence given above. Figure  (b) 

shows that after the assignment, both p and q refer to the same object--its reference count is 

two. And the reference count on Integer(57) has gone to zero which indicates that it is 

garbage. 

 
 

Figure: Reference counts before and after the assignment p = q. 
 

The costs of using reference counts are twofold: First, every object requires the special 

reference count field. Typically, this means an extra word of storage must be allocated in 

each object. Second, every time one reference is assigned to another, the reference counts
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must be adjusted as above. This increases significantly the time taken by assignment 

statements. 

The advantage of using reference counts is that garbage is easily identified. When it becomes 

necessary to reclaim the storage from unused objects, the garbage collector needs only to 

examine the reference count fields of all the objects that have been created by the program. If 

the reference count is zero, the object is garbage. 

It is not necessary to wait until there is insufficient memory before initiating the garbage 

collection  process.  We  can  reclaim  memory  used  by  an  object  immediately  when  its 

reference goes to zero. Consider what happens if we implement the Java assignment p = q in 

the Java virtual machine as follows: 

if (p != q) 
 

{ 
 

if (p != null) 
 

if (--p.refCount == 0) 
 

heap.release (p); 
 

p = q; 
 

if (p != null) 
 

++p.refCount; 
 

} 
 

Notice that the release method is invoked immediately when the reference count of an object 

goes to zero, i.e., when it becomes garbage. In this way, garbage may be collected 

incrementally as it is created.
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