
NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 1 -

UNIT 6

SEMANTIC ANALYSIS

6.1 SEMANTIC ANALYSIS

 Semantic Analysis computes additional information related to the meaning of the

program once the syntactic structure is known.

 In typed languages as C, semantic analysis involves adding information to the symbol

table and performing type checking.

 The information to be computed is beyond the capabilities of standard parsing

techniques, therefore it is not regarded as syntax.

 As for Lexical and Syntax analysis, also for Semantic Analysis we need both a

Representation Formalism and an Implementation Mechanism.

 As representation formalism this lecture illustrates what are called Syntax Directed

Translations.

6.2 SYNTAX DIRECTED TRANSLATION

 The Principle of Syntax Directed Translation states that the meaning of an input

sentence is related to its syntactic structure, i.e., to its Parse-Tree.

 By Syntax Directed Translations we indicate those formalisms for specifying

translations for programming language constructs guided by context-free grammars.

o We associate Attributes to the grammar symbols representing the language

constructs.

o Values for attributes are computed by Semantic Rules associated with

grammar productions.

 Evaluation of Semantic Rules may:

o Generate Code;

o Insert information into the Symbol Table;

o Perform Semantic Check;

o Issue error messages;

o etc.

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 2 -

There are two notations for attaching semantic rules:

1. Syntax Directed Definitions. High-level specification hiding many implementation

details (also called Attribute Grammars).

2. Translation Schemes. More implementation oriented: Indicate the order in which

semantic rules are to be evaluated.

Syntax Directed Definitions

• Syntax Directed Definitions are a generalization of context-free grammars in which:

1. Grammar symbols have an associated set of Attributes;

2. Productions are associated with Semantic Rules for computing the values of attributes.

 Such formalism generates Annotated Parse-Trees where each node of the tree is a

record with a field for each attribute (e.g.,X.a indicates the attribute a of the grammar

symbol X).

 The value of an attribute of a grammar symbol at a given parse-tree node is defined by

a semantic rule associated with the production used at that node.

We distinguish between two kinds of attributes:

1. Synthesized Attributes. They are computed from the values of the attributes of the

children nodes.

2. Inherited Attributes. They are computed from the values of the attributes of both the

siblings and the parent nodes

Syntax Directed Definitions: An Example

• Example. Let us consider the Grammar for arithmetic expressions. The

Syntax Directed Definition associates to each non terminal a synthesized

attribute called val.

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 3 -

6.3 S-ATTRIBUTED DEFINITIONS

Definition. An S-Attributed Definition is a Syntax Directed Definition that uses

only synthesized attributes.

• Evaluation Order. Semantic rules in a S-Attributed Definition can be

evaluated by a bottom-up, or PostOrder, traversal of the parse-tree.

• Example. The above arithmetic grammar is an example of an S-Attributed

Definition. The annotated parse-tree for the input 3*5+4n is:

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 4 -

6.4 L-attributed definition
Definition: A SDD its L-attributed if each inherited attribute of Xi in the RHS of A ! X1 :

:Xn depends only on

1. attributes of X1;X2; : : : ;Xi�1 (symbols to the left of Xi in the RHS)

2. inherited attributes of A.

Restrictions for translation schemes:

1. Inherited attribute of Xi must be computed by an action before Xi.

2. An action must not refer to synthesized attribute of any symbol to the right of that action.

3. Synthesized attribute for A can only be computed after all attributes it references have

been completed (usually at end of RHS).

6.5 SYMBOL TABLES

A symbol table is a major data structure used in a compiler. Associates attributes with

identifiers used in a program. For instance, a type attribute is usually associated with each

identifier. A symbol table is a necessary component Definition (declaration) of identifiers

appears once in a program .Use of identifiers may appear in many places of the program text

Identifiers and attributes are entered by the analysis phases. When processing a definition

(declaration) of an identifier. In simple languages with only global variables and implicit

declarations. The scanner can enter an identifier into a symbol table if it is not already there

In block-structured languages with scopes and explicit declarations:

 The parser and/or semantic analyzer enter identifiers and corresponding attributes

 Symbol table information is used by the analysis and synthesis phases

 To verify that used identifiers have been defined (declared)

 To verify that expressions and assignments are semantically correct – type checking

 To generate intermediate or target code

 Symbol Table Interface

The basic operations defined on a symbol table include:

 allocate – to allocate a new empty symbol table

 free – to remove all entries and free the storage of a symbol table

 insert – to insert a name in a symbol table and return a pointer to its entry

NSRIT

Department of CSE
- 54 -

 lookup – to search for a name and return a pointer to its entry

 set_attribute – to associate an attribute with a given entry

 get_attribute – to get an attribute associated with a given entry

Other operations can be added depending on requirement For example, a delete operation

removes a name previously inserted Some identifiers become invisible (out of scope) after

exiting a block

 This interface provides an abstract view of a symbol table

 Supports the simultaneous existence of multiple tables

 Implementation can vary without modifying the interface

Basic Implementation Techniques

 First consideration is how to insert and lookup names

 Variety of implementation techniques

 Unordered List

 Simplest to implement

 Implemented as an array or a linked list

 Linked list can grow dynamically – alleviates problem of a fixed size array

 Insertion is fast O(1), but lookup is slow for large tables – O(n) on average

 Ordered List

 If an array is sorted, it can be searched using binary search – O(log2 n)

 Insertion into a sorted array is expensive – O(n) on average

 Useful when set of names is known in advance – table of reserved words

 Binary Search Tree

 Can grow dynamically

 Insertion and lookup are O(log2 n) on average

6.6 HASH TABLES AND HASH FUNCTIONS

 A hash table is an array with index range: 0 to TableSize – 1

 Most commonly used data structure to implement symbol tables

 Insertion and lookup can be made very fast – O(1)

 A hash function maps an identifier name into a table index

NSRIT

Department of CSE
- 55 -

 A hash function, h(name), should depend solely on name

 h(name) should be computed quickly

 h should be uniform and randomizing in distributing names

 All table indices should be mapped with equal probability.

 Similar names should not cluster to the same table index

6.7 HASH FUNCTIONS

_ Hash functions can be defined in many ways . . .

_ A string can be treated as a sequence of integer words

_ Several characters are fit into an integer word

_ Strings longer than one word are folded using exclusive-or or addition

_ Hash value is obtained by taking integer word modulo TableSize

_ We can also compute a hash value character by character:

_ h(name) = (c0 + c1 + … + cn–1) mod TableSize, where n is name length

_ h(name) = (c0 * c1 * … * cn–1) mod TableSize

_ h(name) = (cn–1 + cn–2 + … + c1 + c0))) mod TableSize

_ h(name) = (c0 * cn–1 * n) mod TableSize

6.8 RUNTIME ENVIRONMENT

 Runtime organization of different storage locations

 Representation of scopes and extents during program execution.

 Components of executing program reside in blocks of memory (supplied by OS).

 Three kinds of entities that need to be managed at runtime:

o Generated code for various procedures and programs.

 forms text or code segment of your program: size known at compile time.

o Data objects:

 Global variables/constants: size known at compile time

 Variables declared within procedures/blocks: size known

 Variables created dynamically: size unknown.

o Stack to keep track of procedure activations.

Subdivide memory conceptually into code and data areas:

NSRIT

Department of CSE
- 56 -

 Code: Program

 instructions

 Stack: Manage activation of procedures at runtime.

 Heap: holds variables created dynamically

6.9 STORAGE ORGANIZATION

1Fixed-size objects can be placed in predefined locations.

2. Run-time stack and heap

The STACK is used to store:

o Procedure activations.

o The status of the machine just before calling a procedure, so that the status can be

restored when the called procedure returns.

o The HEAP stores data allocated under program control (e.g. by malloc() in C).

NSRIT

Department of CSE
- 57 -

Activation records

Any information needed for a single activation of a procedure is stored in the

ACTIVATION RECORD (sometimes called the STACK FRAME). Today, we’ll assume the

stack grows DOWNWARD, as on, e.g., the Intel architecture. The activation record gets

pushed for each procedure call and popped for each procedure return.

6.9 STATIC ALLOCATION

Statically allocated names are bound to storage at compile time. Storage bindings of

statically allocated names never change, so even if a name is local to a procedure, its name is

always bound to the same storage. The compiler uses the type of a name (retrieved from the

symbol table) to determine storage size required. The required number of bytes (possibly

aligned) is set aside for the name.The address of the storage is fixed at compile time.

Limitations:

− The size required must be known at compile time.

− Recursive procedures cannot be implemented as all locals are statically

allocated.

− No data structure can be created dynamically as all data is static.

 Stack-dynamic allocation

 Storage is organized as a stack.

 Activation records are pushed and popped.

 Locals and parameters are contained in the activation records for the call.

 This means locals are bound to fresh storage on every call.

 If we have a stack growing downwards, we just need a stack_top pointer.

 To allocate a new activation record, we just increase stack_top.

 To deallocate an existing activation record, we just decrease stack_top.

 Address generation in stack allocation

The position of the activation record on the stack cannot be determined statically.

Therefore the compiler must generate addresses RELATIVE to the activation record. If we

have a downward-growing stack and a stack_top pointer, we generate addresses of the form

stack_top + offset

NSRIT

Department of CSE
- 58 -

6.10 HEAP ALLOCATION

Some languages do not have tree-structured allocations. In these cases, activations

have to be allocated on the heap. This allows strange situations, like callee activations that

live longer than their callers’ activations. This is not common Heap is used for allocating

space for objects created at run timeFor example: nodes of dynamic data structures such as

linked lists and trees

�Dynamic memory allocation and deallocation based on the requirements of the

programmalloc() and free() in C programs

new()and delete()in C++ programs

new()and garbage collection in Java programs

�Allocation and deallocation may be completely manual (C/C++), semi-automatic(Java), or

fully automatic (Lisp)

6.11 PARAMETERS PASSING

A language has first-class functionsif functions can bedeclared within any scope

passed as arguments to other functions returned as results of functions.�In a language with

first-class functions and static scope, a function value is generally represented by a closure. a

pair consisting of a pointer to function code a pointer to an activation record.�Passing

functions as arguments is very useful in structuring of systems using upcalls

An example:

main()

{ int x = 4;

int f (int y) {

return x*y;

}

int g (int →int h){

int x = 7;

return h(3) + x;

}

NSRIT

Department of CSE
- 59 -

g(f);//returns 12

}

Passing Functions as Parameters – Implementation with Static Scope

NSRIT

Department of CSE
- 60 -

INTERMEDIATE CODE

7.1. INTERMEDIATE CODE GENERATION

In the analysis-synthesis model of a compiler, the front end analyzes a source

program and creates an intermediate representation, from which the back end generates target

code. This facilitates retargeting: enables attaching a back end for the new machine to an

existing front end.

Logical Structure of a Compiler Front End

A compiler front end is organized as in figure above, where parsing, static checking,

and intermediate-code generation are done sequentially; sometimes they can be combined

and folded into parsing. All schemes can be implemented by creating a syntax tree and then

walking the tree.

Static Checking

This includes type checking which ensures that operators are applied to compatible

operands. It also includes any syntactic checks that remain after parsing like

 flow–of-control checks

o Ex: Break statement within a loop construct

 Uniqueness checks

o Labels in case statements

 Name-related checks

Intermediate Representations

We could translate the source program directly into the target language. However, there

are benefits to having an intermediate, machine-independent representation.

NSRIT

Department of CSE
- 61 -

 A clear distinction between the machine-independent and machine-dependent parts of

the compiler

 Retargeting is facilitated the implementation of language processors for new

machines will require replacing only the back-end.

 We could apply machine independent code optimization techniques

Intermediate representations span the gap between the source and target languages.

• High Level Representations

 closer to the source language

 easy to generate from an input program

 code optimizations may not be straightforward

• Low Level Representations

 closer to the target machine

 Suitable for register allocation and instruction selection

 easier for optimizations, final code generation

There are several options for intermediate code. They can be either

• Specific to the language being implemented

P-code for Pascal

Byte code for Java

7.2 LANGUAGE INDEPENDENT 3-ADDRESS CODE

IR can be either an actual language or a group of internal data structures that are shared by

the phases of the compiler. C used as intermediate language as it is flexible, compiles into

efficient machine code and its compilers are widely available.In all cases, the intermediate

code is a linearization of the syntax tree produced during syntax and semantic analysis. It is

formed by breaking down the tree structure into sequential instructions, each of which is

equivalent to a single, or small number of machine instructions. Machine code can then be

generated (access might be required to symbol tables etc). TAC can range from high- to low-

level, depending on the choice of operators. In general, it is a statement containing at most 3

addresses or operands.

The general form is x := y op z, where “op” is an operator, x is the result, and y and z are

operands. x, y, z are variables, constants, or “temporaries”. A three-address instruction

NSRIT

Department of CSE
- 62 -

consists of at most 3 addresses for each statement.

It is a linear zed representation of a binary syntax tree. Explicit names correspond to interior

nodes of the graph. E.g. for a looping statement , syntax tree represents components of the

statement, whereas three-address code contains labels and jump instructions to represent the

flow-of-control as in machine language. A TAC instruction has at most one operator on the

RHS of an instruction; no built-up arithmetic expressions are permitted.

e.g. x + y * z can be translated as

t1 = y * z

t2 = x + t1

Where t1 & t2 are compiler–generated temporary names.

5Since it unravels multi-operator arithmetic expressions and nested control-flow statements,

it is useful for target code generation and optimization.

Addresses and Instructions

• TAC consists of a sequence of instructions, each instruction may have up to three

addresses, prototypically t1 = t2 op t3

• Addresses may be one of:

o A name. Each name is a symbol table index. For convenience, we writethe names

as the identifier.

o A constant.

o A compiler-generated temporary. Each time a temporary address is needed, the

compiler generates another name from the stream t1, t2, t3, etc.

• Temporary names allow for code optimization to easily move Instructions

• At target-code generation time, these names will be allocated to registers or to memory.

• TAC Instructions

o Symbolic labels will be used by instructions that alter the flow of control.

The instruction addresses of labels will be filled in later.

L: t1 = t2 op t3

o Assignment instructions: x = y op z

• Includes binary arithmetic and logical operations

o Unary assignments: x = op y

NSRIT

Department of CSE
- 63 -

• Includes unary arithmetic op (-) and logical op (!) and type

conversion

o Copy instructions: x = y

o Unconditional jump: goto L

• L is a symbolic label of an instruction

o Conditional jumps:

if x goto L If x is true, execute instruction L next

ifFalse x goto L If x is false, execute instruction L next

o Conditional jumps:

if x relop y goto L

– Procedure calls. For a procedure call p(x1, …, xn)

param x1

…

param xn

call p, n

– Function calls : y= p(x1, …, xn) y = call p,n , return y

– Indexed copy instructions: x = y[i] and x[i] = y

 Left: sets x to the value in the location i memory units beyond y

 Right: sets the contents of the location i memory units beyond x to y

– Address and pointer instructions:

• x = &y sets the value of x to be the location (address) of y.

• x = *y, presumably y is a pointer or temporary whose value is a

location. The value of x is set to the contents of that location.

• *x = y sets the value of the object pointed to by x to the value of y.

Example: Given the statement do i = i+1; while (a[i] < v); , the TAC can be written as

below in two ways, using either symbolic labels or position number of instructions for

labels.

NSRIT

Department of CSE
- 64 -

Types of three address code

There are different types of statements in source program to which three address code has to

be generated. Along with operands and operators, three address code also use labels to

provide flow of control for statements like if-then-else, for and while. The different types of

three address code statements are:

Assignment statement

a = b op c

In the above case b and c are operands, while op is binary or logical operator. The result of

applying op on b and c is stored in a.

Unary operation

a = op b This is used for unary minus or logical negation.

Example: a = b * (- c) + d

Three address code for the above example will be

t1 = -c

t2 = t1 * b

t3 = t2 + d

a = t3

Copy Statement

a = b

The value of b is stored in variable a.

Unconditional jump

goto L

Creates label L and generates three-address code ‘goto L’

v. Creates label L, generate code for expression exp, If the exp returns value true then go to

the statement labelled L. exp returns a value false go to the statement immediately following

the if statement.

Function call

For a function fun with n arguments a1,a2,a3….an ie.,

fun(a1, a2, a3,…an),

NSRIT

Department of CSE
- 65 -

the three address code will be

Param a1

Param a2

…

Param an

Call fun, n

Where param defines the arguments to function.

Array indexing

In order to access the elements of array either single dimension or

multidimension, three address code requires base address and offset value. Base address

consists of the address of first element in an array. Other elements of the array can be

accessed using the base address and offset value.

Example: x = y[i]

Memory location m = Base address of y + Displacement i

x = contents of memory location m

similarly x[i] = y

Memory location m = Base address of x + Displacement i

The value of y is stored in memory location m

Pointer assignment

x = &y x stores the address of memory location y

x = *y y is a pointer whose r-value is location

*x = y sets r-value of the object pointed by x to the r-value of y

Intermediate representation should have an operator set which is rich to implement most of

the

operations of source language. It should also help in mapping to restricted instruction set of

target machine.

Data Structure

Three address code is represented as record structure with fields for operator and operands.

These

NSRIT

Department of CSE
- 66 -

records can be stored as array or linked list. Most common implementations of three address

code are-

Quadruples, Triples and Indirect triples.

7.3 QUADRUPLES-

Quadruples consists of four fields in the record structure. One field to store operator op, two

fields to store operands or arguments arg1and arg2 and one field to store result res. res = arg1

op arg2

Example: a = b + c

b is represented as arg1, c is represented as arg2, + as op and a as res.

Unary operators like ‘-‘do not use agr2. Operators like param do not use agr2 nor result. For

conditional and unconditional statements res is label. Arg1, arg2 and res are pointers to

symbol table or literal table for the names.

Example: a = -b * d + c + (-b) * d

Three address code for the above statement is as follows

t1 = - b

t2 = t1 * d

t3 = t2 + c

t4 = - b

t5 = t4 * d

t6 = t3 + t5

a = t6

Quadruples for the above example is as follows

NSRIT

Department of CSE
- 67 -

7.4 TRIPLES

Triples uses only three fields in the record structure. One field for operator, two fields for

operands named as arg1 and arg2. Value of temporary variable can be accessed by the

position of the statement the computes it and not by location as in quadruples.

Example: a = -b * d + c + (-b) * d

Triples for the above example is as follows

NSRIT

Department of CSE
- 68 -

Arg1 and arg2 may be pointers to symbol table for program variables or literal table for

constant or pointers into triple structure for intermediate results.

Example: Triples for statement x[i] = y which generates two records is as follows

Triples for statement x = y[i] which generates two records is as follows

Triples are alternative ways for representing syntax tree or Directed acyclic graph for

program defined names.

Indirect Triples

Indirect triples are used to achieve indirection in listing of pointers. That is, it uses pointers to

triples than listing of triples themselves.

Example: a = -b * d + c + (-b) * d

NSRIT

Department of CSE
- 69 -

Conditional operator and operands. Representations include quadruples, triples and indirect

triples.

7.5 SYNTAX TREES

Syntax trees are high level IR. They depict the natural hierarchical structure of the source

program. Nodes represent constructs in source program and the children of a node represent

meaningful components of the construct. Syntax trees are suited for static type checking.

Variants of Syntax Trees: DAG

A directed acyclic graph (DAG) for an expression identifies the common sub expressions

(sub expressions that occur more than once) of the expression. DAG's can be constructed

by using the same techniques that construct syntax trees.

A DAG has leaves corresponding to atomic operands and interior nodes corresponding to

operators. A node N in a DAG has more than one parent if N represents a common sub

expression, so a DAG represents expressions concisely. It gives clues to compiler about

the generating efficient code to evaluate expressions.

Example 1: Given the grammar below, for the input string id + id * id , the parse tree,

NSRIT

Department of CSE
- 70 -

syntax tree and the DAG are as shown.

Example : DAG for the expression a + a * (b - c) + (b - c) * d is shown below.

NSRIT

Department of CSE
- 71 -

Using the SDD to draw syntax tree or DAG for a given expression:-

• Draw the parse tree

• Perform a post order traversal of the parse tree

• Perform the semantic actions at every node during the traversal

– Constructs a DAG if before creating a new node, these functions check whether an

identical node already exists. If yes, the existing node is returned.

SDD to produce Syntax trees or DAG is shown below.

For the expression a + a * (b – c) + (b - c) * d, steps for constructing the DAG is as

below.

NSRIT

Department of CSE
- 72 -

7.6 BASIC BLOCKS AND FLOW GRAPHS

A graph representation of three-address statements, called a flow graph, is useful for

understanding code-generation algorithms, even if the graph is not explicitly constructed by a

code-generation algorithm. Nodes in the flow graph represent computations, and the edges

represent the flow of control. Flow graph of a program can be used as a vehicle to collect

information about the intermediate program. Some register-assignment algorithms use flow

graphs to find the inner loops where a program is expected to spend most of its time.

BASIC BLOCKS

A basic block is a sequence of consecutive statements in which flow of control

enters at the beginning and leaves at the end without halt or possibility of branching except at

the end. The following sequence of three-address statements forms a basic block:

t1 := a*a

t2 := a*b

t3 := 2*t2

t4 := t1+t3

t5 := b*b

t6 := t4+t5

A three-address statement x := y+z is said to define x and to use y or z. A name in a basic

block is said to live at a given point if its value is used after that point in the program,

perhaps in another basic block.

The following algorithm can be used to partition a sequence of three-address statements into

basic blocks.

Algorithm 1: Partition into basic blocks.

Input: A sequence of three-address statements.

Output: A list of basic blocks with each three-address statement in exactly one block.

Method:

1. We first determine the set of leaders, the first statements of basic blocks.

The rules we use are the following:

I) The first statement is a leader.

II) Any statement that is the target of a conditional or unconditional goto is a leader.

NSRIT

Department of CSE
- 73 -

III) Any statement that immediately follows a goto or conditional goto statement is a

leader.

2. For each leader, its basic block consists of the leader and all statements up to but not

including the next leader or the end of the program.

Example 3: Consider the fragment of source code shown in fig. 7; it computes the dot

product of two vectors a and b of length 20. A list of three-address statements performing

this computation on our target machine is shown in fig. 8.

begin

prod := 0;

i := 1;

do begin

prod := prod + a[i] * b[i];

i := i+1;

end

while i<= 20

end

Let us apply Algorithm 1 to the three-address code in fig 8 to determine its basic

blocks. statement (1) is a leader by rule (I) and statement (3) is a leader by rule (II), since the

last statement can jump to it. By rule (III) the statement following (12) is a leader. Therefore,

statements (1) and (2) form a basic block. The remainder of the program beginning with

statement (3) forms a second basic block.

(1) prod := 0

(2) i := 1

(3) t1 := 4*i

(4) t2 := a [t1]

(5) t3 := 4*i

(6) t4 :=b [t3]

(7) t5 := t2*t4

(8) t6 := prod +t5

(9) prod := t6

(10) t7 := i+1

NSRIT

Department of CSE
- 74 -

(11) i := t7

(12) if i<=20 goto (3)

7.7 TRANSFORMATIONS ON BASIC BLOCKS

A basic block computes a set of expressions. These expressions are the values of the names

live on exit from block. Two basic blocks are said to be equivalent if they compute the same

set of expressions. A number of transformations can be applied to a basic block without

changing the set of expressions computed by the block. Many of these transformations are

useful for improving the quality of code that will be ultimately generated from a basic block.

There are two important classes of local transformations that can be applied to basic blocks;

these are the structure-preserving transformations and the algebraic transformations.

7.8 STRUCTURE-PRESERVING TRANSFORMATIONS

The primary structure-preserving transformations on basic blocks are:

1. Common sub-expression elimination

2. Dead-code elimination

3. Renaming of temporary variables

4. Interchange of two independent adjacent statements

We assume basic blocks have no arrays, pointers, or procedure calls.

1. Common sub-expression elimination

Consider the basic block

a:= b+c

b:= a-d

c:= b+c

d:= a-d

The second and fourth statements compute the same expression, namely b+c-d, and hence

this basic block may be transformed into the equivalent block

a:= b+c

b:= a-d

c:= b+c d:= b

Although the 1st and 3rd statements in both cases appear to have the same expression

NSRIT

Department of CSE
- 75 -

on the right, the second statement redefines b. Therefore, the value of b in the 3rd

statement is different from the value of b in the 1st, and the 1st and 3rd statements do

not compute the same expression.

2. Dead-code elimination

Suppose x is dead, that is, never subsequently used, at the point where the statement

x:= y+z appears in a basic block. Then this statement may be safely removed without

changing the value of the basic block.

3. Renaming temporary variables

Suppose we have a statement t:= b+c, where t is a temporary. If we change this statement to

u:= b+c, where u is a new temporary variable, and change all uses of this instance of t to u,

then the value of the basic block is not changed.

4.Interchange of statements

Suppose we have a block with the two adjacent statements

t1:= b+c

t2:= x+y

Then we can interchange the two statements without affecting the value of the block if and

only if neither x nor y is t1 and neither b nor c is t2. A normal-form basic block permits all

statement interchanges that are possible.

7.9 DAG REPRESENTATION OF BASIC BLOCKS

The goal is to obtain a visual picture of how information flows through the block. The leaves

will show the values entering the block and as we proceed up the DAG we encounter uses of

these values defs (and redefs) of values and uses of the new values.

Formally, this is defined as follows.

1. Create a leaf for the initial value of each variable appearing in the block. (We do not

know what that the value is, not even if the variable has ever been given a value).

2. Create a node N for each statement s in the block.

i. Label N with the operator of s. This label is drawn inside the node.

ii. Attach to N those variables for which N is the last def in the block. These additional labels

are drawn along side of N.

iii. Draw edges from N to each statement that is the last def of an operand used by N.

NSRIT

Department of CSE
- 76 -

2. Designate as output nodes those N whose values are live on exit, an officially-mysterious

term meaning values possibly used in another block. (Determining the live on exit values

requires global, i.e., inter-block, flow analysis.) As we shall see in the next few sections

various basic-block optimizations are facilitated by using the DAG.

Finding Local Common Subexpressions

As we create nodes for each statement, proceeding in the static order of the tatements, we

might notice that a new node is just like one already in the DAG in which case we don't need

a new node and can use the old node to compute the new value in addition to the one it

already was computing. Specifically, we do not construct a new node if an existing node has

the same children in the same order and is labeled with the same operation.

Consider computing the DAG for the following block of code.

a = b + c

c = a + x

d = b + c

b = a + x

The DAG construction is explain as follows (the movie on the right accompanies the

explanation).

1. First we construct leaves with the initial values.

2. Next we process a = b + c. This produces a node labeled + with a attached and having b0

and c0 as children.

3. Next we process c = a + x.

4. Next we process d = b + c. Although we have already computed b + c in the first

statement, the c's are not the same, so we produce a new node.

5. Then we process b = a + x. Since we have already computed a + x in statement 2, we do

not produce a new node, but instead attach b to the old node.

6. Finally, we tidy up and erase the unused initial values.

You might think that with only three computation nodes in the DAG, the block could be

reduced to three statements (dropping the computation of b). However, this is wrong. Only if

b is dead on exit can we omit the computation of b. We can, however, replace the last

statement with the simpler b = c. Sometimes a combination of techniques finds

NSRIT

Department of CSE
- 77 -

improvements that no single technique would find. For example if a-b is computed, then both

a and b are incremented by one, and then a-b is computed again, it will not be recognized as a

common subexpression even though the value has not changed. However, when combined

with various algebraic transformations, the common value can be recognized.

7.10 DEAD CODE ELIMINATION

Assume we are told (by global flow analysis) that certain values are dead on exit. We

examine each root (node with no ancestor) and delete any that have no live variables

attached. This process is repeated since new roots may have appeared.

For example, if we are told, for the picture on the right, that only a and b are live, then the

root d can be removed since d is dead. Then the rightmost node becomes a root, which also

can be removed (since c is dead).

The Use of Algebraic Identities

Some of these are quite clear. We can of course replace x+0 or 0+x by simply x. Similar

Considerations apply to 1*x, x*1, x-0, and x/1.

Strength reduction

Another class of simplifications is strength reduction, where we replace one operation by a

cheaper one. A simple example is replacing 2*x by x+x on architectures where addition is

cheaper than multiplication. A more sophisticated strength reduction is applied by compilers

that recognize induction variables (loop indices). Inside a for i from 1 to N loop, the

expression 4*i can be strength reduced to j=j+4 and 2^i can be strength reduced to j=2*j

(with suitable initializations of j just before the loop). Other uses of algebraic identities are

possible; many require a careful reading of the language

reference manual to ensure their legality. For example, even though it might be advantageous

to convert ((a + b) * f(x)) * a to ((a + b) * a) * f(x)

it is illegal in Fortran since the programmer's use of parentheses to specify the order of

operations can not be violated.

Does

a = b + c

x = y + c + b + r

NSRIT

Department of CSE
- 78 -

contain a common sub expression of b+c that need be evaluated only once?

The answer depends on whether the language permits the use of the associative and

commutative law for addition. (Note that the associative law is invalid for floating point

numbers.)

NSRIT

Department of CSE
- 79 -

OPTIMIZATION

8.1 PRINCIPLE SOURCES OF OPTIMIZATION

A transformation of a program is called local if it can be performed by looking only at the

statements in a bas9ic block; otherwise, it is called global. Many transformations can be

performed at both the local and global levels. Local transformations are usually performed

first.

Function-Preserving Transformations There are a number of ways in which a compiler can

improve a program without changing the function it computes. Common sub expression

elimination, copy propagation, deadcode elimination, and constant folding are common

examples of such function-preserving transformations. The other transformations come up

primarily when global optimizations are performed. Frequently, a program will include

several calculations of the same value, such as an offset in an array. Some of these duplicate

calculations cannot be avoided by the programmer because they lie below the level of detail

accessible within the source language. For example, block B5 recalculates 4*i and 4*j.

Common Sub expressions An occurrence of an expression E is called a common sub

expression if E was previously computed, and the values of variables in E have not changed

since the previous computation. We can avoid re computing the expression if we can use the

previously computed value. For example, the assignments to t7 and t10 have the common sub

expressions 4*I and 4*j, respectively, on the right side in Fig. They have been eliminated in

Fig by using t6 instead of t7 and t8 instead of t10. This change is what would result if we

reconstructed the intermediate code from the dag for the basic block.

Example: the above Fig shows the result of eliminating both global and local common sub

expressions from blocks B5 and B6 in the flow graph of Fig. We first discuss the

transformation of B5 and then mention some subtleties involving arrays.

After local common sub expressions are eliminated B5 still evaluates 4*i and 4*j, as

NSRIT

Department of CSE
- 80 -

Shown in the earlier fig. Both are common sub expressions; in particular, the three statements

t8:= 4*j; t9:= a[t[8]; a[t8]:=x in B5 can be replaced by t9:= a[t4]; a[t4:= x using t4 computed

in block B3. In Fig. observe that as control passes from the evaluation of 4*j in B3 to B5,

there is no change in j, so t4 can be used if 4*j is needed.

Another common sub expression comes to light in B5 after t4 replaces t8. The new

expression a[t4] corresponds to the value of a[j] at the source level. Not only does j retain its

value as control leaves b3 and then enters B5, but a[j], a value computed into a temporary t5,

does too because there are no assignments to elements of the array a in the interim. The

statement t9:= a[t4]; a[t6]:= t9 in B5 can therefore be replaced by

a[t6]:= t5 The expression in blocks B1 and B6 is not considered a common sub expression

although t1 can be used in both places. After control leaves B1 and before it reaches B6,it

can go through B5,where there are assignments to a. Hence, a[t1] may not have the same

value on reaching B6 as it did in leaving B1, and it is not safe to treat a[t1] as a common sub

expression.

Copy Propagation

Block B5 in Fig. can be further improved by eliminating x using two new transformations.

One concerns assignments of the form f:=g called copy statements, or copies for short. Had

we gone into more detail in Example 10.2, copies would have arisen much sooner, because

the algorithm for eliminating common sub expressions introduces them, as do several other

algorithms. For example, when the common sub expression in c:=d+e is eliminated in Fig.,

the algorithm uses a new variable t to hold the value of d+e. Since control may reach c:=d+e

either after the assignment to a or after the assignment to b, it would be incorrect to replace

c:=d+e by either c:=a or by c:=b. The idea behind the copy-propagation transformation is to

use g for f, wherever possible after the copy statement f:=g. For example, the assignment

x:=t3 in block B5 of Fig. is a copy. Copy propagation applied to B5 yields:

x:=t3

a[t2]:=t5

a[t4]:=t3

goto B2 Copies introduced during common subexpression elimination. This may not appear

to be an improvement, but as we shall see, it gives us the opportunity to eliminate the

assignment to x.

NSRIT

Department of CSE
- 81 -

8.2 DEAD-CODE ELIMINATIONS

A variable is live at a point in a program if its value can be used subsequently; otherwise, it is

dead at that point. A related idea is dead or useless code, statements that compute values that

never get used. While the programmer is unlikely to introduce any dead code intentionally, it

may appear as the result of previous transformations. For example, we discussed the use of

debug that is set to true or false at various points in the program, and used in statements like

If (debug) print. By a data-flow analysis, it may be possible to deduce that each time the

program reaches this statement, the value of debug is false. Usually, it is because there is one

particular statement Debug :=false

That we can deduce to be the last assignment to debug prior to the test no matter what

sequence of branches the program actually takes. If copy propagation replaces debug by

false, then theprint statement is dead because it cannot be reached. We can eliminate both the

test and printing from the o9bject code. More generally, deducing at compile time that the

value of an expression is a constant and using the constant instead is known as constant

folding. One advantage of copy propagation is that it often turns the copy statement into dead

code. For example, copy propagation followed by dead-code elimination removes the

assignment to x and transforms 1.1 into

a [t2] := t5

a [t4] := t3

goto B2

8.3 PEEPHOLE OPTIMIZATION

A statement-by-statement code-generations strategy often produce target code that contains

redundant instructions and suboptimal constructs .The quality of such target code can be

improved by applying “optimizing” transformations to the target program.

A simple but effective technique for improving the target code is peephole optimization, a

method for trying to improving the performance of the target program by examining a short

sequence of target instructions (called the peephole) and replacing these instructions by a

shorter or faster sequence, whenever possible.

NSRIT

Department of CSE
- 82 -

The peephole is a small, moving window on the target program. The code in

the peephole need not contiguous, although some implementations do require this. We shall

give the following examples of program transformations that are characteristic of peephole

optimizations:

• Redundant-instructions elimination

• Flow-of-control optimizations

• Algebraic simplifications

• Use of machine idioms

REDUNTANT LOADS AND STORES

If we see the instructions sequence

(1) (1) MOV R0,a

(2) (2) MOV a,R0

-we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the

value of a is already in register R0.If (2) had a label we could not be sure that (1) was always

executed immediately before (2) and so we could not remove (2).

UNREACHABLE CODE

Another opportunity for peephole optimizations is the removal of unreachable

instructions. An unlabeled instruction immediately following an unconditional jump may be

removed. This operation can be repeated to eliminate a sequence of instructions. For

example, for debugging purposes, a large program may have within it certain segments that

are executed only if a variable debug is 1.In C, the source code might look like:

#define debug 0

….

If (debug) {

Print debugging information

}

In the intermediate representations the if-statement may be translated as:

If debug =1 goto L2

Goto L2

L1: print debugging information

NSRIT

Department of CSE
- 83 -

L2: …………………………(a)

One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what

the value of debug; (a) can be replaced by:

If debug ≠1 goto L2

Print debugging information

L2: ……………………………(b)

As the argument of the statement of (b) evaluates to a constant true it can be replaced by

If debug ≠0 goto L2

Print debugging information

L2: ……………………………(c)

As the argument of the first statement of (c) evaluates to a constant true, it can be replaced by

goto L2. Then all the statement that print debugging aids are manifestly unreachable and can

be eliminated one at a time.

8.4 FLOW-OF-CONTROL OPTIMIZATIONS

The unnecessary jumps can be eliminated in either the intermediate code or the

target code by the following types of peephole optimizations. We can replace the jump

sequence

goto L2

….

L1 : gotoL2

by the sequence

goto L2

….

L1 : goto L2

If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto

L2 provided it is preceded by an unconditional jump .Similarly, the sequence

if a < b goto L1

….

NSRIT

Department of CSE
- 84 -

L1 : goto L2

can be replaced by

if a < b goto L2

….

L1 : goto L2

Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto.

Then the sequence

goto L1

……..

L1:if a<b goto L2

L3: …………………………………..(1)

may be replaced by

if a<b goto L2

goto L3

…….

L3: ………………………………….(2)

While the number of instructions in (1) and (2) is the same, we sometimes skip the

unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time

8.5 REGISTER ALLOCATION

Instructions involving register operands are usually shorter and faster than those involving

operands in memory. Therefore, efficient utilization of register is particularly important in

generating good code. The use of registers is often subdivided into two sub problems:

1. During register allocation, we select the set of variables that will reside in registers at a

point in the program.

2. During a subsequent register assignment phase, we pick the specific register that a variable

will reside in. Finding an optimal assignment of registers to variables is difficult, even with

single register values. Mathematically, the problem is NP-complete. The problem is further

complicated because the hardware and/or the operating system of the target machine may

require that certain register usage conventions be observed.

NSRIT

Department of CSE
- 85 -

Certain machines require register pairs (an even and next odd numbered register) for some

operands and results. For example, in the IBM System/370 machines integer multiplication

and integer division involve register pairs. The multiplication instruction is of the form M x,

y where x, is the multiplicand, is the even register of an even/odd register pair.

The multiplicand value is taken from the odd register pair. The multiplier y is a single

register. The product occupies the entire even/odd register pair.

The division instruction is of the form D x, y where the 64-bit dividend occupies an even/odd

register pair whose even register is x; y represents the divisor. After division, the even

register holds the remainder and the odd register the quotient. Now consider the two three

address code sequences (a) and (b) in which the only difference is

the operator in the second statement. The shortest assembly sequence for (a) and (b) are

given in(c). Ri stands for register i. L, ST and A stand for load, store and add respectively.

The optimal choice for the register into which ‘a’ is to be loaded depends on what will

ultimately happen to e.

t := a + b t := a + b

t := t * c t := t + c

t := t / d t := t / d

(a) (b)

Two three address code sequences

L R1, a L R0, a

A R1, b A R0, b

M R0, c A R0, c

D R0, d SRDA R0,

ST R1, t D R0, d

ST R1, t

(a) (b)

8.6 CHOICE OF OF EVALUATION ORDER

The order in which computations are performed can affect the efficiency of the target code.

Some computation orders require fewer registers to hold intermediate results than others.

Picking a best order is another difficult, NP-complete problem. Initially, we shall avoid the

NSRIT

Department of CSE
- 86 -

problem by generating code for the three -address statements in the order in which they have

been produced by the intermediate code generator.

8.7 APPROCHES TO CODE GENERATION

The most important criterion for a code generator is that it produce correct code. Correctness

takes on special significance because of the number of special cases that code generator must

face. Given the premium on correctness, designing a code generator so it can be easily

implemented, tested, and maintained is an important design goal Reference Counting

Garbage Collection The difficulty in garbage collection is not the actual process of collecting

the garbage--it is the problem of finding the garbage in the first place. An object is

considered to be garbage when no references to that object exist. But how can we tell when

no references to an object exist? A simple expedient is to keep track in each object of the

total number of references to that object. That is, we add a special field to each object called

a reference count . The idea is that the reference count field is not accessible to the Java

program. Instead, the reference count field is updated by the Java virtual machine itself.

Consider the statement

Object p = new Integer (57);

which creates a new instance of the Integer class. Only a single variable, p, refers to the

object. Thus, its reference count should be one.

Figure: Objects with reference counters.

Now consider the following sequence of statements:

Object p = new Integer (57);

Object q = p;

This sequence creates a single Integer instance. Both p and q refer to the same object.

Therefore, its reference count should be two.

NSRIT

Department of CSE
- 87 -

In general, every time one reference variable is assigned to another, it may be necessary to

update several reference counts. Suppose p and q are both reference variables. The

assignment

p = q;

would be implemented by the Java virtual machine as follows:

if (p != q)

{

if (p != null)

--p.refCount;

p = q;

if (p != null)

++p.refCount;

}

For example suppose p and q are initialized as follows:

Object p = new Integer (57);

Object q = new Integer (99);

As shown in Figure (a), two Integer objects are created, each with a reference count of

one. Now, suppose we assign q to p using the code sequence given above. Figure (b)

shows that after the assignment, both p and q refer to the same object--its reference count is

two. And the reference count on Integer(57) has gone to zero which indicates that it is

garbage.

Figure: Reference counts before and after the assignment p = q.

The costs of using reference counts are twofold: First, every object requires the special

reference count field. Typically, this means an extra word of storage must be allocated in

each object. Second, every time one reference is assigned to another, the reference counts

NSRIT

Department of CSE
- 88 -

must be adjusted as above. This increases significantly the time taken by assignment

statements.

The advantage of using reference counts is that garbage is easily identified. When it becomes

necessary to reclaim the storage from unused objects, the garbage collector needs only to

examine the reference count fields of all the objects that have been created by the program. If

the reference count is zero, the object is garbage.

It is not necessary to wait until there is insufficient memory before initiating the garbage

collection process. We can reclaim memory used by an object immediately when its

reference goes to zero. Consider what happens if we implement the Java assignment p = q in

the Java virtual machine as follows:

if (p != q)

{

if (p != null)

if (--p.refCount == 0)

heap.release (p);

p = q;

if (p != null)

++p.refCount;

}

Notice that the release method is invoked immediately when the reference count of an object

goes to zero, i.e., when it becomes garbage. In this way, garbage may be collected

incrementally as it is created.

NSRIT

Department of CSE
- 89 -

TEXT BOOKS:

1. Compilers, Principles Techniques and Tools- Alfred V Aho, Monical S Lam, Ravi Sethi,

Jeffrey D. Ullman,2
nd

ed, Pearson,2007.

2. Principles of compiler design, V. Raghavan, 2
nd

ed, TMH, 2011.

3. Principles of compiler design, 2
nd

ed, Nandini Prasad, Elsevier

REFERENCE BOOKS:

1. http://www.nptel.iitm.ac.in/downloads/106108052/

2. Compiler construction, Principles and Practice, Kenneth C Louden, CENGAGE

3. Implementations of Compiler, A new approach to Compilers including the algebraic

methods, Yunlinsu, SPRINGER

http://www.nptel.iitm.ac.in/downloads/106108052/

